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We present a consistent set of commutation relations (CR.)  for a quantum 
system immersed in a classical gravitational field. The gravity field is describcd 
by metric tensor g,k(x) and g~)(x) with coordinate gauge gio = O. The Hamilto- 
nian of the system is found to be a linear function of [-goo(x)]  '/2. Its 
properties we define by C.R. avoiding explicit expression in terms of fields, as 
well as its splitting into free and interaction parts. In this way a consistent set of 
C.R., which are equally simple for a flat and curvilinear space, can be estab- 
lished. To stress the main idea of our approach, we consider the simple but still 
nontrivial example of a scalar electrodynamics immersed in a gravity field. The 
electromagnetic current operator we define by its C.R. and not explicitly. An 
interesting feature of this approach is that the Poisson equation follows from the 
consistency of the C.R. The C.R. for the energy and momentum operators of the 
system in a gravity field are established which generalize the usual Poincare 
group generators C.R. For example, we find ( i / h c  2 )1 H,,I, ~, Ho.I, ~] = P,, vo' ,, 'r,,, 
where H,,c, I is the Hamiltonian of the system,.which is a linear functional of 
o( x ) =- [ -  goo( x )] 1/2 and P,t.,~ represents the momentum-density operator 
[averaged with the classical function s(x)]. 

1. We start with the Maxwell equations in a gravity field with the 
metric g~k(x), goo(X), gio = O, 

1 OD 1 0 B  
c a---f = v x g '  V x E ,  

c Ot 

e = ( - g o o ) ~ / ~ o ,  H = ( - g o o ) ~ / ~ B  
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Effective dielectric and magnetic susceptibilities e =/~ = 1 / o ( x )  - 1 /  
[ - goo(X)] 1/2 and ~7 x ... is a general covariant differential operation in the 
metric g,k(x) (Landau and Lifshitz, 1977). We avoid the usual quantization 
procedure (an introduction of potentials A~, finding the solutions, calcula- 
tion of the energy and quantizing appropriate amplitudes) as complicated 
and awkward in the presence of gravity field. Instead, we treat the problem 
in terms of observable fields. We introduce q-number D,C.,.); in the classical 
limit, the measurement of D~r gives the result fD(x)a(x)d3x.  Therefore, 
D, can be considered a linear q-functional of that classical function a(x) 
which describes the properties of a measuring device. The commutation 
relation (C.R.) between the electromagnetic fields can be written now as 
follows: 

1 [D,+Bh, D,.+Bd] f . c, b lk )dx  hc = eikt( a'dl ~ -- �9 

The Maxwell equations have the form 

c101)"0t (i_~c [ H ' D ~ ] )  = B~215 

We observe that the Hamiltonian H is a linear functional of the argument 

o( - [_ goo( X)] w" 

Taking into account the presence of charges, we can formulate dy- 
namics in presence of gravity field, 

/ [ H  a, D. + Bh] = Bavx~ , - Jo. - Day x,', hc 

This equation can be considered as a definition of the C.R. of the energy 
operator H a. 

2. The consistency of the scheme requires the fulfillment of Jacobi 
identities (J.I.) like 

[ Ho , [B . ,  Bt,]] = [[Ho, B.]Bh]-[[Ho, BhlB.] 

The following C.R., 

i[B,,J,]=O, i[D ,4]=e2A ,+fv.[sx(vxa)]ax 

where A is a q-functional depending on scalar function (a.s) guarantee the 
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consistency of our scheme. The continuity equation which contains the 
electric charge operator Px and other C.R. are 

i [H , , , px l=Lvx , [D, , ,Ox]=O,  i[px, B , , ] = f v ' ( V A x a ) d x ,  

i[Px, L ]  = Asva 

(All operations are general covariant!) We must stress that the definition of 
H~ will be complete only if we add the C.R. of this operator with a charged 
field (see part 4 below). 

3. Our next step is an investigation of properties of i[H~ Ho,]. We can 
find this using the J.I. (in the following h = c = 1): 

i2[[Ho,H~.]B.]=B., , . , . ,_. , . , , ,  Sk=O'o .k- -ao 'k  

This suggests that the commutator i[Ho, Ho,] = - P.,. depends on the func- 
tional argument s(x)  = o'~7o - o~7o': 

i[P,., B. + Db] = B~,•162 v • + D~• • eP, t, 

(In deriving this equation we have assumed C.R. i[Ho, J~]= Mo, + Pov., 
which will be proved in part 4.) The C.R. for [Ho, Ho,] does not contain any 
field operators and may have broader range of applicability (consider a 
nonrelativistic particle movement in a strong static gravity field. In this case 
we can write Hamiltonian explicitly Ha = (1/2m)p,g 'k(X)O(x)pk with an 
additive constant Ao(x)  and add the C.R. ( i /h)[pi ,  xk] = 6~. To satisfy 
(i/hc)[Ho, Ho, ] = - Ps, it is necessary to put A = mc2!) 

4. We consider now a charge scalar field "immersed" in the same 
gravity field. Let q~.~ be a q-functional scalar field, q~+ be its conjugated 
field, ~r,~ the generalized momentum with the following C.R.: 

i[wa+'n',~ + + ~,r + ~,+,'n'8 + 7r~ + + = f( 'p + 

and dynamics follows from 

i[Ho,eOr+Tr,,]='rrv ,oT+ep(ov,~.,.g,,,.~_,,,'-,,v~, (T- -[de tg ,  k(x)] '/2) 

We have also [Px, ep, + 7r~] = - eep.~ - eTr.~,  i [  H o ,  p x ]  = JoX, , 

i[pa, Ss]=As,x., ,  i[Ho, Js]=Mo~. +po,~,y~.,~,-~ 
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(a) We can approve the form of i [ H . ,  Ho.] = - P o ' v o - o w '  

i[ Ps, q', + = q'.,.., + 

We have also i[ P~, Ox] = O~,x., 

i [ ? . . J , , ] = j  , . , , , . .  _ , , , .  , 

(b) For  the commuta to r  [P~., Pr], we find 

[P~-, P~-] = P/s" .~ -~" , ' . ,  and [Psi[ Ps.,, P~3]] +C .P .  = 0  

is fulfilled. 
(c) The following expression can be proved for the commuta tor :  

i [ H o ,  p,.] = Hov 'r162 + Qor + ...... ~ + Go/  

with the self-ajoint Q,,, 

i [Q~, , ,ep~+Tr~]=ep,~. 'r . . , i .  , , :r,,.,.~,, ,., +,,,~-.g~,,~ ; [ G, �9 q5 + r ] = 0  

and also 

i[ Q, , , ,  D~ + Bh] = - B~,.v ,~,.,,..,, - eJ~,,,, + e J, . , , , ,  + D~,,h, 

i [ G , , , D ,  + Bh] = Bo,,v ' , , . , ,e"", . , -  D , , , r  'h ...... ,,,,,. - e p , , ~  ~,, ...... ,,,, 

From all these C.R. we can derive appropria te  uncertainty relations for 
measurements  of a pair of observables (in the presence or absence of a 
gravity field. For  example,  consider [Px, Ju] 9r [Px, D,,].) 

It is interesting to note that we cannot,  in general, obtain a closed 
algebra for Ha, Ps, Q , , .  Only if s, is a Killing field, si: k + sk: i = 0, is the 
algebra of H, P closed. 

In the next section we show that for the flat space the full set of C.R. 
for Poincar6 group can be obtained and therefore relativistic invariance of 
the scheme is guaranteed.  

5. We consider linear dependence  of o ( x )  = o o + n . x  

l i / h : l [  ,,.o.,,+,,, .] = eo,,,._oo.~ + 

From our C.R. the interpretat ion of H and P follows: H 1 is the total 
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energy, H,,.,. is the booster operator, P,, is momentum along n, and P,,xx is 
the total angular momentum. Here we have 6 of 45 of Poincar6 group C.R. 
From liPs, P~,] = P~.~vl.c-~.~'v, we get another 15 C.R. and the last 24 C.R. 
can be obtained from i[Ho, P~]. 

If the gravity field cannot be removed by coordinate transformation, 
we get in a usual way uncertainty relations restricting precision of measure- 
ment of pairs of observables. 

It is remarkable that the absence of magnetic charges and the Poisson 
equation follow from the conditions [Ho, G ] = 0 .  There is no need to 
postulate them in the beginning. 

In conclusion, we summarize features of this approach to quantum 
field theory. 

(a) The set of C.R. was proved to be consistent due to fulfillment of all 
J.I. 

(b) The treatment of time and space is not symmetric; from 
( i /hc2)[Ho, Ho,] = Povo'-o'vo we can see that "square of energy is equal to 
momentum." However, relativistic invariance is guaranteed in the limit of a 
flat space. 

(c) The general coordinate transformation is restricted to 3-space 
arbitrary coordinate transformations. The imposition of gi0 = 0 is always 
possible (there are four arbitrary functions in coordinate transformation) 
and it is justified because only due to gi0 = 0 it is possible to synchronize 
clocks in the space. 
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